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Abstract— As one of the key methods as well as a bottleneck for 
Network Intrusion Detection Systems (NIDSes) to detect and 
eliminate malicious traffic, pattern matching is increasingly 
gaining popularity while also faces threats from hackers’ 
overloading attempts. The support of mixed case-sensitive and 
case-insensitive patterns, which is essential for NIDSes to detect 
possible attacks targeting different applications and operating 
systems, is currently a potential vulnerability since the widely 
used Convert-Search-Verify (CSV) approach encounters severe 
performance degradation in the worst-case scenarios. This paper 
firstly gives a thorough analysis on the reasons causing jams in 
the worst case, and then boosts up the performance by leveraging 
a novel mechanism named Convert-Search-incrementally-Verify 
(CSiV). CSiV differs from CSV in that it first merges possible 
case-sensitive matches to suspicious segments in the “Search” 
phase, and then leverages an Aho-Corasick like algorithm to 
verify them. The infeasibility of the simple Double Search (DS) 
approach is also explained by analyzing its low average-case 
throughput. Extensive experiments based on real pattern sets 
along with both collected and artificial traffic traces show that, 
the performance of the proposed approach outperforms the DS 
approach by a factor of 2 in the ordinary cases, and is better than 
the CSV approach up to 5 times under the worst-case scenario, 
indicating both its feasibility and robustness for a worst-case safe 
NIDS. 
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I.  INTRODUCTION 
With billions of US dollars lost annually caused by the 

malicious attacks of/from the Internet [1], such as DDOS-
attack, viruses/worms-spread, and spam, etc., network security 
is becoming a serious problem necessary to be solved with no 
time to delay. As one of the key methods for Network Intrusion 
Detection Systems (NIDSes) to detect and eliminate malicious 
traffic, Pattern Matching and analysis over network traffic, are 
increasingly gaining popularity nowadays. 

Usually, NIDSes require inspecting on-the-fly large volume 

of Internet traffic against a huge rule set containing tens of 
thousands of patterns/virus-signatures [2, 3]; furthermore, to 
avoid crash or being blocked by unexpected/unwieldy 
workloads, e.g. generated by hackers intentionally, NIDSes are 
also required to cope with the worst-case scenarios, which is 
extremely headachy to handle. 

Note that the support of mixed Case-Sensitive (CS) and 
Case-Insensitive (CI) patterns is one of the 
compulsory/necessary features enabling NIDSes to adapt to the 
various network contents coming from different parts of the 
Internet and different kinds of applications. For instance, 
commands and filenames on Microsoft Windows platforms are 
CI while those over UNIX/LINUX are CS, which means that 
NIDSes must support mixed CS and CI patterns to detect 
possible attacks targeting different platforms. 

However, unfortunately, there is still no satisfactory 
solution for mixed CS and CI patterns up to now. The most 
straightforward solution is the CI-to-CS Translation approach, 
the idea of which is to convert all the CI patterns into 
equivalent CS ones and therefore turn the problem into a CS-
only one. For example, CI pattern “ab” will be converted to 4 
equivalent CS patterns “ab”, “Ab”, “aB”, and “AB”. However, 
apparently, such an approach suffers from the storage 
explosion issue, since any n-byte CI pattern has to be translated 
into 2n CS ones, which makes it actually infeasible for ordinary 
occasions handling thousands of long patterns.  

To avoid pattern replications, another approach, which is 
called the Double Search (DS) approach, is to treat CI and CS 
patterns separately that the patterns are pre-partitioned into a CI 
subset and a CS one, and then all the traffic data would be 
matched against these two subsets, respectively. As a 
consequence, there would be an around-50% deterministic 
performance degradation caused by the extra payload scan in 
the ordinary cases.  

Different from the DS approach, the Convert-Search-Verify 
(CSV) approach, applied in a famous open-source NIDS Snort 
[2], realizes CI-CS-mixed pattern matching by sacrificing the 
worse-case performance instead of the average performance. 
Firstly, all patterns together with the network traffic are 
converted into a capitalized copy, which is used to find the CI 
matches and possible CS matches; whenever a possible CS 
match occurs, the matched string would be further verified with 
the original CS patterns for final judgment. Compared with the 
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DS approach, the CSV approach performs fairly well for 
ordinary case, when the CS matches seldom occur; however, 
for the extreme/worst case when most patterns are CS and 
matches occur for each and every sliding window of the traffic, 
the performance may even degrade by an order of magnitude. 

The contributions of this paper are two-folds. On one hand, 
we look inside the problem of the CSV approach and find out 
that, actually, there are too many redundant transactions in its 
“Verify” phase, especially under the worst-case scenarios; on 
the other hand, based on this observation, we proposed an 
optimized Convert-Search-incrementally-Verify (CSiV) method 
which first merges possible case-sensitive matches to 
suspicious segments in the “Search” phase, and then employs 
an Aho-Corasick [4] (AC) like algorithm to verify them. Thus 
the “Verify” phase is speeded up by leveraging the temporary 
results of the previous matches, which in return reduces the 
number of transactions for verification. According to the 
experimental results based on real pattern sets and traffic traces 
collected from the real world or artificially generated for worst-
case evaluation, the performance of the CSiV approach 
outperforms that of DS by a factor of 2 in the ordinary cases, 
and is better than the CSV approach up to 5 times under the 
worst-case scenario, with little average performance lost. 

The remainder of this paper is organized in the following 
way. Section II first analyzes the drawbacks of the DS and 
CSV approaches, and then presents the idea, implementation, 
and analysis of CSiV in turn; Section III shows the 
experimental results as well as the comparisons with the 
existing schemes; Section IV concludes the paper and presents 
future work. 

II. DESIGN CONCEPT 

A. Definitions 
Before describing the idea and implementation, we give a 

few definitions here to avoid clutter: 
• String: a sequence of characters; 
• Pattern: a sequence of characters, along with a 

property “CS/CI” specifying its case sensitivity; 
• Pattern Matching: the operations to search the given 

string, determine whether there are occurrences of any 
pattern(s) in the given pattern set, and then report their 
positions if any.  For example, given a string 
“AAAAAAAAAAAabefghIj” and a pattern set 
consisting a CI pattern <“efgh”, CI> along with 2 CS 
patterns <“AAAAAAAa”, CS> and <“hIj”, CS>, the 
pattern matching engine must report 3 matches: 
<”AAAAAAAa”, CS > at Byte 5~12, <”efgh”, CI> at 
Byte 14~17, and <”hIj”, CS> at Byte 17~19. 

B. The Basic Idea 
As described in Section I, the DS approach splits the pattern 

set into the CS and CI subsets, and deploys sequential searches 
within them, respectively, to realize the capability of mixed CS 
and CI pattern matching. Apparently, such approach would in 
return result in deterministic performance halved, and therefore 
we consider it not that feasible to base on. Note that for the 

ordinary scenarios, matches actually seldom occur and the 
addition scan usually results in vain. 

On the counterpart side, the CSV approach suffers from the 
uncertainty of search time and sharp performance drop for the 
worst-case scenarios. The following example demonstrates the 
idea of the CSV approach as well as its drawbacks in nature. 
Given that the example in Section II.A is used here.  Initially, 
in the “Convert “stage (Fig. 1(a)), all patterns are capitalized 
and formed a pattern set for filtering. And correspondingly, the 
input string T is capitalized as well.  

Then in the “Search” stage (Fig. 1(b)), string T ′  is matched 
against the capitalized pattern set for CI and potential CS 
matches. Whenever a match occurs, if it comes out to be a CI 
one, a final match is reported; otherwise, i.e. a CS-pattern is 
matched, the third stage, the “Verify” stage (Fig. 1(c)) is 
launched for a further check, and the corresponding suspicious 
sub-strings in T would be matched against the corresponding 
suspicious pattern in the original pattern set, character by 
character.  

 

 
 
(a) Convert 
 

 
 
(b) Search 
 

 
 
(c) Verify 

Figure 1.  An illustration of the CSV approach. 



Apparently, it is the “Verify” stage that leads to the 
problem of the CSV approach. Note that the workload of the 
approach, or more precisely the workload of the “Verify” stage, 
heavily depends on the number of matches occurring in the 
“Search” stages. And consider the worst-case scenario when 
matches are found for each and every byte within the string 
(e.g. in Fig 1(b), the consecutive ‘A’s in  T ′ ), 
( 1)Patt PattM L L− + i  per-byte-verification are required, 

where M denotes the length of the string, and PattL  denotes 
the length of the suspicious pattern.  

 

 
Figure 2.  A worst-case scenario of the CSV approach. 

 

 
Figure 3.  The AC_CS state machine constructed for the pattern set in Fig. 1. 

As we step into the details, we find that most of the per-
byte-verifications, especially in the worst-case scenarios, 
overlap with each other, which are redundant and can be 
avoided. For instance, in the example shown in Fig.1(c), the 
verifications for Bytes 1~8 in T’ against Pattern 
<“AAAAAAAa”, CS> overlaps with that for Bytes 2~9, which 
means that the verifications for Byte 2~8 against Pattern 
<“AAAAAAAa”, CS> would be redundantly launched; 
theoretically speaking, at most ( 1)PattL −  redundant 
verifications would be launched for most bytes, which indeed 
results in the performance degradation for the CSV approach in 
the extreme case. 

Based on the above observation, the idea of the proposed 
CSiV approach is to try erasing the overlapping verifications 
and therefore avoiding unnecessary overheads. For the 
“Search” stage, verification would NOT be launched 
immediately whenever CS-pattern match occurs, as that in the 
CSV approach. Instead, the CSiV approach introduces a novel 
concept called “suspicious segment” to represent a large 

suspicious part within the string, and process the whole 
segment in a batch way, using an AC-like algorithm instead of 
per-byte verification. More specifically, a “suspicious segment” 
is a consecutive sub-string of T, which is reported by the 
“Search” stage and contains possible CS patterns needed to be 
verified. A suspicious segment is denoted by a <starting pos, 
ending pos> pair that indicates its beginning and ending 
positions in T; it is actually a part within the string with 
overlapping bytes for verifications. For instance, Byte 1~12 in 
T, of the shown example, forms a suspicious segment which 
contains 5 possible overlapping CS-matches; the whole 
segment, i.e. “AAAAAAAAAAAa” would be reported by the 
“Search” stage and sent to the “Verify” stage to perform CS-
verification with an AC-like state-machine. No redundant 
operation, therefore, would be launched under this framework. 

C. Implementation and Analysis 
1) The dedicated AC state machine for CS patterns 

As mentioned in Section II.B, The CSiV approach differs 
from the CSV one in that it first finds out the suspicious 
segments and then leverages an AC-like algorithm to verify 
them. The constructing procedure of the AC state machine 
(named AC_CS in this paper) is detailed in [4]. For instance, 
the 3-pattern pattern set used in Fig.1 translates to an AC_CS 
state machine illustrated in Fig. 3. 

Briefly, upon receiving an input character, the AC_CS state 
machine updates its state by first trying to find the 
corresponding transition from the current state, and if that fails 
then following the failure pointer. [4] proved that the AC 
algorithm has a deterministic performance: it costs at most 2M 
state transitions for an AC state machine to scan a string with 
length M, independently with the pattern set is used. Thus, if 
we perform the verifications in a batch fashion, the number of 
character comparisons will be bounded by 2M. 

2) Procedure of incremental verification 
The procedure of incremental verification consists of two 

sorts of operations: forming suspicious segments and calling 
the AC_CS state machine for verification. Though it is more 
straightforward to form all the segments first and verify them 
one by one, extra memory allocations are required for storing 
all starting and ending positions of the segments. Instead of 
launching these operations in 2 separate runs, the AC_CS state 
machine is called immediately once the end of a segment is 
determined. Fig. 5 shows the pseudo code and Fig. 4 gives an 
illustration, whose explanation is as follows. 

Generally speaking, the procedure tries to extend a 
suspicious segment incrementally. Whenever a possible CS 
match needs verifications, the coverage of this possible match 
will be checked to decide whether it overlaps with the current 
suspicious segment being extended. If so, the segment will be 
elongated by updating the ending position (e.g., when 
pos=8~12 in Fig.4); otherwise it means that the segment can 
not be extended more and should be sent for a verification by 
the AC_CS state machine; meanwhile, a new suspicious 
segment is generated to include this possible CS match (e.g. 
when pos=19 in Fig.4). Note that the AC_CS state machine 
also needs to be called for the last segment at the end of the 



whole pattern matching process. In this way, it is guaranteed 
that no redundant character comparisons are incurred, and no 
characters other than those inside the possible matches are 
verified.  
 

 
Figure 4.  An illustration of the incremental verfication. 

 
Figure 5.  Pseudo code of the incremental verfication. 

The CSiV approach is designed to compete with the CSV 
one in ordinary cases, which outperforms the DS approach, and 
achieve a high accelerating factor against CSV in the worst-
case scenarios.  

On one hand, since the frequency of CS match occurrences 
is low in real-life traffic, the verification phase usually takes 
just a little proportion in the total processing time. Therefore in 
this case, the processing time of the CSiV approach is 
dominated by the one-time scan launched in the search phase, 

which is distinctly shorter than that needed by the DS approach 
to scan the payload twice. 

On the other hand, for the worst-case scenarios, when 
verifications are required for each and every incoming byte, the 
whole payload will be regarded as a single large segment by 
CSiV to be verified. For the verification process, the AC_CS 
state machine requires performing 2M character comparisons. 
This number is apparently much lower than 
( 1)Patt PattM L L− + i , which is needed by the CSV approach, 
considering the fact that  there are some patterns with 

16PattL ≥  i  in the current snort rule set. 

III. EXPERIMENTAL RESULTS 

A. Experiment Setup 
We evaluated the performance of CSiV against DS and 

CSV approaches using a set of real-life packet traces collected 
during the DARPA NIDS evaluation tests at MIT Lincoln 
Laboratory in year 2000 [5]. The pattern matching algorithm 
used for the search phases of the three approaches is Aho-
Corasick [4], which is employed by Snort v2.6 as the default 
algorithm due to its high throughput and deterministic 
performance. 

All the experiments were conducted on a machine equipped 
with a 2.40GHz Pentium 4 processor with 8KB L1 cache, 
512KB L2 cache, and 1GB DDR main memory. The host 
operating system was Linux (Red Hat Fedora Core 4, kernel 
version 2.6.5). All codes are developed based on the Aho- 
Corasick CSV implementation in Snort v2.6 and compiled 
using GCC v3.3.3. 

The rule set used is from the Snort official website [2] dated 
Sep.1, 2006, which is converted by Snort to a pattern matching 
database containing 16704 patterns organized in 196 port 
groups. Note that a rule “alert tcp any any -> any any (ack:0; 
flags:SFU12; content: “AAAAAAAAAAAAAAAA”; 
depth:16;)” exists in the rule set. As analyzed in Section II.B, 
with such a pattern “AAAAAAAAAAAAAAAA” specified, 
the worst-case scenario for CSV and CSiV could be generated 
when every byte within all incoming packet payloads is 
replaced with character ‘A’.  

The packet trace set used includes three traces named 
LL_DOS_1.0, LL_DOS_2.0.2 and NT, respectively by [5]. To 
generate both the random and the worst-case scenarios, we 
keep the packet headers in these traces and replace the payload 
with random bytes and all ‘A’ characters, respectively. 
Therefore, each trace derived 3 different versions marked as 
“Normal Payload”, “Randomized Payload” and “All ‘A’ worst-
case Payload” as depicted in Table I. 

The values of processing time presented in Table I are 
measured by repeatedly running 5 times of the target 
algorithms, so as to smooth the incurred noises resulted from 
indeterminate factors such as OS scheduling and IO activities. 
The values of memory cost are measured by keeping track of 
the dynamic memory allocating and freeing operations.  

                                                        
i  For example, Snort 2.x contains a pattern composed by 16 consecutive ‘A’s. 

Initialize global variables before searching each T:
 seg_start = -1; 
 seg_end = -1; 
 
Function Verify(v_start, v_end): 
  // Called in the Search phase when a possible 
CS match need to be verified, with start and end position 
specified by v_start and v_end 
 If (v_start > seg_end) and (seg_end != -1) then 
  // This possible CS match has no 
overlapping with the current segment 
  AC_CS_search(seg_start, seg_end); 
  seg_start := v_start; 
  seg_end := v_end; 
 Else       // extend the current segment 
  seg_end := v_end; 
 
After searching each T: 
 If seg_end != -1 then 
  AC_CS_search(seg_start, seg_end); 



TABLE I.  COMPARISONS OF THE 3 APPROACHES 

Processing Time (seconds) 

LL_DOS_1.0 LL_DOS_2.0.2 NT Approach 
Memory 

cost 
(MBytes) Normal 

Payload 
Random 
Payload 

All-‘A’ 
worst-case 
Payload 

Normal 
Payload 

Random 
Payload 

All-‘A’ 
worst-case 
Payload 

Normal 
Payload 

Random 
Payload 

All-‘A’ 
worst-case 
Payload 

CSV 165.211 3.639 3.133 61.041 1.604 1.329 23.912 8.379 7.759 160.095 
DS 165.163 6.647 5.749 12.435 3.050 2.363 5.038 16.966 13.513 31.848 

CSiV 279.372 3.171 2.473 11.977 1.577 1.101 4.771 8.389 5.916 32.556 

B. Collected Data 
Table I shows the memory costs and processing times. It 

can be seen that with the three different trace sets, CSV 
invariantly encounters severe performance degradation (about 
95%) in the worst case, i.e. the “All-‘A’ worst-case Payload”; 
in contrast, DS and CSiV consumed only about 20% of time of 
CSV for the All-‘A’ worst-case Payload. Please notice that the 
reduced values of worst-case processing time of DS and CSiV 
are still 4~5 times higher than the processing time with the 
“Randomized Payload”, which is due to the greatly increased 
number of “match()” function calls to report the final matches. 

Compared with CSV and CSiV, although DS performs well 
with the All-‘A’ worst-case Payload, it almost halves the 
searching performance when processing either the 
“Randomized Payload” or the “Normal Payload”, which is 
coherent with the previous analysis.  

On the other hand, CSiV requires more memory than CSV 
and DS, due to the extra storage for the AC_CS state machine. 
However, since only part of the patterns, i.e. the CS ones need 
to be replicated to AC_CS state machine, apparently the 
storage overhead is less than the size of the original pattern set. 
For instance the overhead is about 114MB, i.e. 69% of the 
original set in our case. Considering the fact that the throughput 
issue is much more critical than the memory consumption issue 
for NIDSes, it is desirable to trade a tolerable memory cost 
(114MB) off for ~400% worst-case performance gain over 
CSV and ~100% average-case gain over DS. 

IV. RELATED WORKS 
Pattern matching has been well studied in the literature for 

the past three decades, consisting of both software algorithms 
[6-11] and hardware mechanisms [12-14].  

As far as hardware solutions are concerned, Mixed CS and 
CI patterns are easily supported since the Double Search 
Approach can be applied in a straightforward fashion by 
copying and driving the inputs to separate CS and CI pattern 
matching circuits in parallel. The parallelism enables the 
Double Search approach to avoid launching two scans in 
sequence and thus achieves high performance in the average 
case. [13] proposed a Ternary Content Addressable 
Memory(TCAM)-based string matching engine which 
naturally supports mixed CS and CI patterns due to TCAM’s 
ability to set a bit mask for each memory bit inside. Based on 

[14], [15] also proposed an extension to support mixed CS and 
CI patterns which need not split the pattern matching engines.  

Although hardware solutions are usually with much higher 
performance, they suffer from long developing period/time-to-
market and high manufacturing cost, as well as low flexibility. 
Also be aware of the rapid development of the multi-core 
processors which is becoming powerful and comparable with 
traditional hardware solutions, developing fast and robust 
software algorithms supporting mixed CS and CI patterns is 
also necessary and worthwhile. However, this issue was not 
well resolved in the past. [10] revealed the fact that Snort meets 
worst-case bottleneck when encountering all ‘A’ payload, but it 
did not propose a solution to narrow the gap between the 
average-case performance and the worst-case performance. 

V. CONCLUSIONS AND FUTURE WORK 
Pattern matching with the support of mixed case-sensitive 

and case-insensitive patterns is a key method for NIDSes to 
detect and prevent malicious attacks targeting different 
applications and operating systems. However, in conventional 
software-based NIDSes, the implementation of this feature is 
difficult to achieve high performance in both average-case and 
worst-case scenarios, failing to meet the demand of a robust 
and high throughput NIDS. In the widely-used CSV approach, 
a large number of redundant character comparisons are 
launched and caused severe performance loss when facing 
worst-case oriented attacks. To eliminate the redundant 
operations, CSiV employs a dedicated Aho-Corasick state 
machine for incrementally verifying the possible case-
sensitive matches, achieving a much better lower-bounded 
worst-case performance which is independent of both the 
traffic trace and the pattern length. The infeasibility of DS 
approach is also explained by analyzing its low average-case 
throughput. Extensive experiments based on real pattern sets 
along with both collected and artificial traffic traces show that, 
the performance of the proposed approach outperforms the DS 
approach by a factor of 2 in the ordinary cases, and is better 
than the CSV approach up to 5 times under the worst-case 
scenario, indicating both its feasibility and robustness for a 
worst-case safe NIDS. 

In terms of future work, though pattern matching 
algorithm generally determines the performance of an NIDS, 
there are many other modules such as flow/session 
reassembling and alert reporting which may become 



bottlenecks when attackers intentionally generate malicious 
traffic. Therefore, further research on system-wide 
improvement of robustness of NIDSes is a promising direction. 
Redundancy identification and mitigation, as we presents in 
this paper, are expected to be helpful for solving such 
problems. 
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