
A Robust Approach for Matching Mixed Case-
sensitive and Case-insensitive Patterns

Abstract— As one of the key methods as well as a bottleneck for
Network Intrusion Detection Systems (NIDSes) to detect and
eliminate malicious traffic, pattern matching is increasingly
gaining popularity while also faces threats from hackers’
overloading attempts. The support of mixed case-sensitive and
case-insensitive patterns, which is essential for NIDSes to detect
possible attacks targeting different applications and operating
systems, is currently a potential vulnerability since the widely
used Convert-Search-Verify (CSV) approach encounters severe
performance degradation in the worst-case scenarios. This paper
firstly gives a thorough analysis on the reasons causing jams in
the worst case, and then boosts up the performance by leveraging
a novel mechanism named Convert-Search-incrementally-Verify
(CSiV). CSiV differs from CSV in that it first merges possible
case-sensitive matches to suspicious segments in the “Search”
phase, and then leverages an Aho-Corasick like algorithm to
verify them. The infeasibility of the simple Double Search (DS)
approach is also explained by analyzing its low average-case
throughput. Extensive experiments based on real pattern sets
along with both collected and artificial traffic traces show that,
the performance of the proposed approach outperforms the DS
approach by a factor of 2 in the ordinary cases, and is better than
the CSV approach up to 5 times under the worst-case scenario,
indicating both its feasibility and robustness for a worst-case safe
NIDS.

Keywords-network security, intrusion detection, pattern
matching, case insenstive, worst-case safe, incremental verification

I. INTRODUCTION
With billions of US dollars lost annually caused by the

malicious attacks of/from the Internet [1], such as DDOS-
attack, viruses/worms-spread, and spam, etc., network security
is becoming a serious problem necessary to be solved with no
time to delay. As one of the key methods for Network Intrusion
Detection Systems (NIDSes) to detect and eliminate malicious
traffic, Pattern Matching and analysis over network traffic, are
increasingly gaining popularity nowadays.

Usually, NIDSes require inspecting on-the-fly large volume

of Internet traffic against a huge rule set containing tens of
thousands of patterns/virus-signatures [2, 3]; furthermore, to
avoid crash or being blocked by unexpected/unwieldy
workloads, e.g. generated by hackers intentionally, NIDSes are
also required to cope with the worst-case scenarios, which is
extremely headachy to handle.

Note that the support of mixed Case-Sensitive (CS) and
Case-Insensitive (CI) patterns is one of the
compulsory/necessary features enabling NIDSes to adapt to the
various network contents coming from different parts of the
Internet and different kinds of applications. For instance,
commands and filenames on Microsoft Windows platforms are
CI while those over UNIX/LINUX are CS, which means that
NIDSes must support mixed CS and CI patterns to detect
possible attacks targeting different platforms.

However, unfortunately, there is still no satisfactory
solution for mixed CS and CI patterns up to now. The most
straightforward solution is the CI-to-CS Translation approach,
the idea of which is to convert all the CI patterns into
equivalent CS ones and therefore turn the problem into a CS-
only one. For example, CI pattern “ab” will be converted to 4
equivalent CS patterns “ab”, “Ab”, “aB”, and “AB”. However,
apparently, such an approach suffers from the storage
explosion issue, since any n-byte CI pattern has to be translated
into 2n CS ones, which makes it actually infeasible for ordinary
occasions handling thousands of long patterns.

To avoid pattern replications, another approach, which is
called the Double Search (DS) approach, is to treat CI and CS
patterns separately that the patterns are pre-partitioned into a CI
subset and a CS one, and then all the traffic data would be
matched against these two subsets, respectively. As a
consequence, there would be an around-50% deterministic
performance degradation caused by the extra payload scan in
the ordinary cases.

Different from the DS approach, the Convert-Search-Verify
(CSV) approach, applied in a famous open-source NIDS Snort
[2], realizes CI-CS-mixed pattern matching by sacrificing the
worse-case performance instead of the average performance.
Firstly, all patterns together with the network traffic are
converted into a capitalized copy, which is used to find the CI
matches and possible CS matches; whenever a possible CS
match occurs, the matched string would be further verified with
the original CS patterns for final judgment. Compared with the

This work is supported by NSFC (No. 60373007, 60573121 and
60625201), the Cultivation Fund of the Key Scientific and Technical
Innovation Project, Ministry of Education of China (No. 705003), the
Specialized Research Fund for the Doctoral Program of Higher Education of
China (No. 20040003048 and 20060003058), China/Ireland Science and
Technology Collaboration Research Fund (2006DFA11170), and the
Tsinghua Basic Research Foundation (JCpy2005054).

Hongbin Lu
Dept. of Computer Sci. & Tech.

Tsinghua University
Beijing, China

lu-hb02@mails.tsinghua.edu.cn

Kai Zheng

IBM China Research Lab
Beijing, China

zhengkai@cn.ibm.com

Bin Liu
Dept. of Computer Sci. & Tech.

Tsinghua University
Beijing, China

liub@tsinghua.edu.cn

Changhua Sun
Dept. of Computer Sci. & Tech.

Tsinghua University
Beijing, China

sch04@mails.tsinghua.edu.cn

DS approach, the CSV approach performs fairly well for
ordinary case, when the CS matches seldom occur; however,
for the extreme/worst case when most patterns are CS and
matches occur for each and every sliding window of the traffic,
the performance may even degrade by an order of magnitude.

The contributions of this paper are two-folds. On one hand,
we look inside the problem of the CSV approach and find out
that, actually, there are too many redundant transactions in its
“Verify” phase, especially under the worst-case scenarios; on
the other hand, based on this observation, we proposed an
optimized Convert-Search-incrementally-Verify (CSiV) method
which first merges possible case-sensitive matches to
suspicious segments in the “Search” phase, and then employs
an Aho-Corasick [4] (AC) like algorithm to verify them. Thus
the “Verify” phase is speeded up by leveraging the temporary
results of the previous matches, which in return reduces the
number of transactions for verification. According to the
experimental results based on real pattern sets and traffic traces
collected from the real world or artificially generated for worst-
case evaluation, the performance of the CSiV approach
outperforms that of DS by a factor of 2 in the ordinary cases,
and is better than the CSV approach up to 5 times under the
worst-case scenario, with little average performance lost.

The remainder of this paper is organized in the following
way. Section II first analyzes the drawbacks of the DS and
CSV approaches, and then presents the idea, implementation,
and analysis of CSiV in turn; Section III shows the
experimental results as well as the comparisons with the
existing schemes; Section IV concludes the paper and presents
future work.

II. DESIGN CONCEPT

A. Definitions
Before describing the idea and implementation, we give a

few definitions here to avoid clutter:
• String: a sequence of characters;
• Pattern: a sequence of characters, along with a

property “CS/CI” specifying its case sensitivity;
• Pattern Matching: the operations to search the given

string, determine whether there are occurrences of any
pattern(s) in the given pattern set, and then report their
positions if any. For example, given a string
“AAAAAAAAAAAabefghIj” and a pattern set
consisting a CI pattern <“efgh”, CI> along with 2 CS
patterns <“AAAAAAAa”, CS> and <“hIj”, CS>, the
pattern matching engine must report 3 matches:
<”AAAAAAAa”, CS > at Byte 5~12, <”efgh”, CI> at
Byte 14~17, and <”hIj”, CS> at Byte 17~19.

B. The Basic Idea
As described in Section I, the DS approach splits the pattern

set into the CS and CI subsets, and deploys sequential searches
within them, respectively, to realize the capability of mixed CS
and CI pattern matching. Apparently, such approach would in
return result in deterministic performance halved, and therefore
we consider it not that feasible to base on. Note that for the

ordinary scenarios, matches actually seldom occur and the
addition scan usually results in vain.

On the counterpart side, the CSV approach suffers from the
uncertainty of search time and sharp performance drop for the
worst-case scenarios. The following example demonstrates the
idea of the CSV approach as well as its drawbacks in nature.
Given that the example in Section II.A is used here. Initially,
in the “Convert “stage (Fig. 1(a)), all patterns are capitalized
and formed a pattern set for filtering. And correspondingly, the
input string T is capitalized as well.

Then in the “Search” stage (Fig. 1(b)), string T ′ is matched
against the capitalized pattern set for CI and potential CS
matches. Whenever a match occurs, if it comes out to be a CI
one, a final match is reported; otherwise, i.e. a CS-pattern is
matched, the third stage, the “Verify” stage (Fig. 1(c)) is
launched for a further check, and the corresponding suspicious
sub-strings in T would be matched against the corresponding
suspicious pattern in the original pattern set, character by
character.

(a) Convert

(b) Search

(c) Verify

Figure 1. An illustration of the CSV approach.

Apparently, it is the “Verify” stage that leads to the
problem of the CSV approach. Note that the workload of the
approach, or more precisely the workload of the “Verify” stage,
heavily depends on the number of matches occurring in the
“Search” stages. And consider the worst-case scenario when
matches are found for each and every byte within the string
(e.g. in Fig 1(b), the consecutive ‘A’s in T ′),
(1)Patt PattM L L− + i per-byte-verification are required,

where M denotes the length of the string, and PattL denotes
the length of the suspicious pattern.

Figure 2. A worst-case scenario of the CSV approach.

Figure 3. The AC_CS state machine constructed for the pattern set in Fig. 1.

As we step into the details, we find that most of the per-
byte-verifications, especially in the worst-case scenarios,
overlap with each other, which are redundant and can be
avoided. For instance, in the example shown in Fig.1(c), the
verifications for Bytes 1~8 in T’ against Pattern
<“AAAAAAAa”, CS> overlaps with that for Bytes 2~9, which
means that the verifications for Byte 2~8 against Pattern
<“AAAAAAAa”, CS> would be redundantly launched;
theoretically speaking, at most (1)PattL − redundant
verifications would be launched for most bytes, which indeed
results in the performance degradation for the CSV approach in
the extreme case.

Based on the above observation, the idea of the proposed
CSiV approach is to try erasing the overlapping verifications
and therefore avoiding unnecessary overheads. For the
“Search” stage, verification would NOT be launched
immediately whenever CS-pattern match occurs, as that in the
CSV approach. Instead, the CSiV approach introduces a novel
concept called “suspicious segment” to represent a large

suspicious part within the string, and process the whole
segment in a batch way, using an AC-like algorithm instead of
per-byte verification. More specifically, a “suspicious segment”
is a consecutive sub-string of T, which is reported by the
“Search” stage and contains possible CS patterns needed to be
verified. A suspicious segment is denoted by a <starting pos,
ending pos> pair that indicates its beginning and ending
positions in T; it is actually a part within the string with
overlapping bytes for verifications. For instance, Byte 1~12 in
T, of the shown example, forms a suspicious segment which
contains 5 possible overlapping CS-matches; the whole
segment, i.e. “AAAAAAAAAAAa” would be reported by the
“Search” stage and sent to the “Verify” stage to perform CS-
verification with an AC-like state-machine. No redundant
operation, therefore, would be launched under this framework.

C. Implementation and Analysis
1) The dedicated AC state machine for CS patterns

As mentioned in Section II.B, The CSiV approach differs
from the CSV one in that it first finds out the suspicious
segments and then leverages an AC-like algorithm to verify
them. The constructing procedure of the AC state machine
(named AC_CS in this paper) is detailed in [4]. For instance,
the 3-pattern pattern set used in Fig.1 translates to an AC_CS
state machine illustrated in Fig. 3.

Briefly, upon receiving an input character, the AC_CS state
machine updates its state by first trying to find the
corresponding transition from the current state, and if that fails
then following the failure pointer. [4] proved that the AC
algorithm has a deterministic performance: it costs at most 2M
state transitions for an AC state machine to scan a string with
length M, independently with the pattern set is used. Thus, if
we perform the verifications in a batch fashion, the number of
character comparisons will be bounded by 2M.

2) Procedure of incremental verification
The procedure of incremental verification consists of two

sorts of operations: forming suspicious segments and calling
the AC_CS state machine for verification. Though it is more
straightforward to form all the segments first and verify them
one by one, extra memory allocations are required for storing
all starting and ending positions of the segments. Instead of
launching these operations in 2 separate runs, the AC_CS state
machine is called immediately once the end of a segment is
determined. Fig. 5 shows the pseudo code and Fig. 4 gives an
illustration, whose explanation is as follows.

Generally speaking, the procedure tries to extend a
suspicious segment incrementally. Whenever a possible CS
match needs verifications, the coverage of this possible match
will be checked to decide whether it overlaps with the current
suspicious segment being extended. If so, the segment will be
elongated by updating the ending position (e.g., when
pos=8~12 in Fig.4); otherwise it means that the segment can
not be extended more and should be sent for a verification by
the AC_CS state machine; meanwhile, a new suspicious
segment is generated to include this possible CS match (e.g.
when pos=19 in Fig.4). Note that the AC_CS state machine
also needs to be called for the last segment at the end of the

whole pattern matching process. In this way, it is guaranteed
that no redundant character comparisons are incurred, and no
characters other than those inside the possible matches are
verified.

Figure 4. An illustration of the incremental verfication.

Figure 5. Pseudo code of the incremental verfication.

The CSiV approach is designed to compete with the CSV
one in ordinary cases, which outperforms the DS approach, and
achieve a high accelerating factor against CSV in the worst-
case scenarios.

On one hand, since the frequency of CS match occurrences
is low in real-life traffic, the verification phase usually takes
just a little proportion in the total processing time. Therefore in
this case, the processing time of the CSiV approach is
dominated by the one-time scan launched in the search phase,

which is distinctly shorter than that needed by the DS approach
to scan the payload twice.

On the other hand, for the worst-case scenarios, when
verifications are required for each and every incoming byte, the
whole payload will be regarded as a single large segment by
CSiV to be verified. For the verification process, the AC_CS
state machine requires performing 2M character comparisons.
This number is apparently much lower than
(1)Patt PattM L L− + i , which is needed by the CSV approach,
considering the fact that there are some patterns with

16PattL ≥ i in the current snort rule set.

III. EXPERIMENTAL RESULTS

A. Experiment Setup
We evaluated the performance of CSiV against DS and

CSV approaches using a set of real-life packet traces collected
during the DARPA NIDS evaluation tests at MIT Lincoln
Laboratory in year 2000 [5]. The pattern matching algorithm
used for the search phases of the three approaches is Aho-
Corasick [4], which is employed by Snort v2.6 as the default
algorithm due to its high throughput and deterministic
performance.

All the experiments were conducted on a machine equipped
with a 2.40GHz Pentium 4 processor with 8KB L1 cache,
512KB L2 cache, and 1GB DDR main memory. The host
operating system was Linux (Red Hat Fedora Core 4, kernel
version 2.6.5). All codes are developed based on the Aho-
Corasick CSV implementation in Snort v2.6 and compiled
using GCC v3.3.3.

The rule set used is from the Snort official website [2] dated
Sep.1, 2006, which is converted by Snort to a pattern matching
database containing 16704 patterns organized in 196 port
groups. Note that a rule “alert tcp any any -> any any (ack:0;
flags:SFU12; content: “AAAAAAAAAAAAAAAA”;
depth:16;)” exists in the rule set. As analyzed in Section II.B,
with such a pattern “AAAAAAAAAAAAAAAA” specified,
the worst-case scenario for CSV and CSiV could be generated
when every byte within all incoming packet payloads is
replaced with character ‘A’.

The packet trace set used includes three traces named
LL_DOS_1.0, LL_DOS_2.0.2 and NT, respectively by [5]. To
generate both the random and the worst-case scenarios, we
keep the packet headers in these traces and replace the payload
with random bytes and all ‘A’ characters, respectively.
Therefore, each trace derived 3 different versions marked as
“Normal Payload”, “Randomized Payload” and “All ‘A’ worst-
case Payload” as depicted in Table I.

The values of processing time presented in Table I are
measured by repeatedly running 5 times of the target
algorithms, so as to smooth the incurred noises resulted from
indeterminate factors such as OS scheduling and IO activities.
The values of memory cost are measured by keeping track of
the dynamic memory allocating and freeing operations.

i For example, Snort 2.x contains a pattern composed by 16 consecutive ‘A’s.

Initialize global variables before searching each T:
 seg_start = -1;
 seg_end = -1;

Function Verify(v_start, v_end):
 // Called in the Search phase when a possible
CS match need to be verified, with start and end position
specified by v_start and v_end
 If (v_start > seg_end) and (seg_end != -1) then
 // This possible CS match has no
overlapping with the current segment
 AC_CS_search(seg_start, seg_end);
 seg_start := v_start;
 seg_end := v_end;
 Else // extend the current segment
 seg_end := v_end;

After searching each T:
 If seg_end != -1 then
 AC_CS_search(seg_start, seg_end);

TABLE I. COMPARISONS OF THE 3 APPROACHES

Processing Time (seconds)

LL_DOS_1.0 LL_DOS_2.0.2 NT Approach
Memory

cost
(MBytes) Normal

Payload
Random
Payload

All-‘A’
worst-case
Payload

Normal
Payload

Random
Payload

All-‘A’
worst-case
Payload

Normal
Payload

Random
Payload

All-‘A’
worst-case
Payload

CSV 165.211 3.639 3.133 61.041 1.604 1.329 23.912 8.379 7.759 160.095
DS 165.163 6.647 5.749 12.435 3.050 2.363 5.038 16.966 13.513 31.848

CSiV 279.372 3.171 2.473 11.977 1.577 1.101 4.771 8.389 5.916 32.556

B. Collected Data
Table I shows the memory costs and processing times. It

can be seen that with the three different trace sets, CSV
invariantly encounters severe performance degradation (about
95%) in the worst case, i.e. the “All-‘A’ worst-case Payload”;
in contrast, DS and CSiV consumed only about 20% of time of
CSV for the All-‘A’ worst-case Payload. Please notice that the
reduced values of worst-case processing time of DS and CSiV
are still 4~5 times higher than the processing time with the
“Randomized Payload”, which is due to the greatly increased
number of “match()” function calls to report the final matches.

Compared with CSV and CSiV, although DS performs well
with the All-‘A’ worst-case Payload, it almost halves the
searching performance when processing either the
“Randomized Payload” or the “Normal Payload”, which is
coherent with the previous analysis.

On the other hand, CSiV requires more memory than CSV
and DS, due to the extra storage for the AC_CS state machine.
However, since only part of the patterns, i.e. the CS ones need
to be replicated to AC_CS state machine, apparently the
storage overhead is less than the size of the original pattern set.
For instance the overhead is about 114MB, i.e. 69% of the
original set in our case. Considering the fact that the throughput
issue is much more critical than the memory consumption issue
for NIDSes, it is desirable to trade a tolerable memory cost
(114MB) off for ~400% worst-case performance gain over
CSV and ~100% average-case gain over DS.

IV. RELATED WORKS
Pattern matching has been well studied in the literature for

the past three decades, consisting of both software algorithms
[6-11] and hardware mechanisms [12-14].

As far as hardware solutions are concerned, Mixed CS and
CI patterns are easily supported since the Double Search
Approach can be applied in a straightforward fashion by
copying and driving the inputs to separate CS and CI pattern
matching circuits in parallel. The parallelism enables the
Double Search approach to avoid launching two scans in
sequence and thus achieves high performance in the average
case. [13] proposed a Ternary Content Addressable
Memory(TCAM)-based string matching engine which
naturally supports mixed CS and CI patterns due to TCAM’s
ability to set a bit mask for each memory bit inside. Based on

[14], [15] also proposed an extension to support mixed CS and
CI patterns which need not split the pattern matching engines.

Although hardware solutions are usually with much higher
performance, they suffer from long developing period/time-to-
market and high manufacturing cost, as well as low flexibility.
Also be aware of the rapid development of the multi-core
processors which is becoming powerful and comparable with
traditional hardware solutions, developing fast and robust
software algorithms supporting mixed CS and CI patterns is
also necessary and worthwhile. However, this issue was not
well resolved in the past. [10] revealed the fact that Snort meets
worst-case bottleneck when encountering all ‘A’ payload, but it
did not propose a solution to narrow the gap between the
average-case performance and the worst-case performance.

V. CONCLUSIONS AND FUTURE WORK
Pattern matching with the support of mixed case-sensitive

and case-insensitive patterns is a key method for NIDSes to
detect and prevent malicious attacks targeting different
applications and operating systems. However, in conventional
software-based NIDSes, the implementation of this feature is
difficult to achieve high performance in both average-case and
worst-case scenarios, failing to meet the demand of a robust
and high throughput NIDS. In the widely-used CSV approach,
a large number of redundant character comparisons are
launched and caused severe performance loss when facing
worst-case oriented attacks. To eliminate the redundant
operations, CSiV employs a dedicated Aho-Corasick state
machine for incrementally verifying the possible case-
sensitive matches, achieving a much better lower-bounded
worst-case performance which is independent of both the
traffic trace and the pattern length. The infeasibility of DS
approach is also explained by analyzing its low average-case
throughput. Extensive experiments based on real pattern sets
along with both collected and artificial traffic traces show that,
the performance of the proposed approach outperforms the DS
approach by a factor of 2 in the ordinary cases, and is better
than the CSV approach up to 5 times under the worst-case
scenario, indicating both its feasibility and robustness for a
worst-case safe NIDS.

In terms of future work, though pattern matching
algorithm generally determines the performance of an NIDS,
there are many other modules such as flow/session
reassembling and alert reporting which may become

bottlenecks when attackers intentionally generate malicious
traffic. Therefore, further research on system-wide
improvement of robustness of NIDSes is a promising direction.
Redundancy identification and mitigation, as we presents in
this paper, are expected to be helpful for solving such
problems.

REFERENCES
[1] "2005 FBI Computer Crime Survey,"

http://www.digitalriver.com/v2.0-
img/operations/naievigi/site/media/pdf/FBIccs2005.pdf.

[2] Snort - the de facto standard for intrusion detection/prevention,
http://www.snort.org.

[3] "Clam AntiVirus," http://www.clamav.net.
[4] A. V. Aho and M. J. Corasick, "Efficient string matching: An aid

to bibliographic search," communications of the ACM, vol. 18, pp.
333-340, 1975.

[5] "MIT DARPA Intrusion Detection Data Sets,"
http://www.ll.mit.edu/IST/ideval/data/2000/2000_data_index.html.

[6] G. A. Stephen, "String Searching Algorithms," Lecture Notes
Series on Computing, vol. 3, 1994.

[7] M. Fisk and G. Varghese, "An analysis of fast string matching
applied to content-based forwarding and intrusion detection,"
Technical Report CS2001-0670 (updated version), University of
California - San Diego 2002.

[8] E. P. Markatos, S. Antonatos, M. Polychronakis, and K. G.
Anagnostakis, "EXB: exclusion-based signature matching for
intrusion detection," presented at IASTED International
Conference on Communication and Computer Network (CCN'02),
2002.

[9] R. T. Liu, N. F. Huang, C. H. Chen, and C. N. Kao, "A fast string-
match algorithm for network processor-based network intrusion
detection system," ACM Trans. embedded Computing Systems, vol.
3, pp. 614-633, 2004.

[10] S. Antonatos, M. Polychronakis, P. Akritidis, K. G. Anagnostakis,
and E. P. Markatos, "Piranha: Memory-efficient String Matching
for Intrusion Detection," presented at the 20th IFIP International
Information Security Conference (SEC 2005), 2005.

[11] K. G. Anagnostakis, E. P. Markatos, S. Antonatos, and M.
Polychronakis, "E2XB: a domain-specific string matching
algorithm for intrusion detection," presented at the 18th IFIP
International Information Security Conference (SEC2003), 2003.

[12] S. Fide and S. Jenks, "A Survey of String Matching Approaches in
Hardware," TR SPDS 06-01, University of California - Irvine,
2006.

[13] F. Yu, R. H. Katz, and T. V. Lakshman, "Gigabit Rate Packet
Pattern-Matching Using TCAM " in Proceedings of the Network
Protocols, 12th IEEE International Conference on (ICNP'04) -
Volume 00 IEEE Computer Society, 2004 pp. 174-183

[14] J. v. Lunteren, "High-Performance Pattern-Matching Engine for
Intrusion Detection," presented at IEEE INFOCOM 2006,
Barcelona, Spain, 2006.

[15] "Efficient mathing of mixed case-sensitive and case-insensitive
patterns," IP.com PriorArtDatabase, Disclosed by IBM,
http://www.priorartdatabase.com/IPCOM/000138568/, 2006.

