
Simplifying Service Deployment with Virtual Appliances

Changhua Sun∗, Le He†, Qingbo Wang† and Ruth Willenborg‡

∗Department of Computer Science and Technology

Tsinghua University, Beijing, 100084, China

sunchanghua@tsinghua.org.cn
†IBM China Research Laboratory, Beijing, 100094, China

{lehe,wangqbo}@cn.ibm.com
‡IBM Software Group, Durham, NC, 27703-9141, USA

rewillen@us.ibm.com

Abstract

As IT services become more powerful and com-

plex, service deployment gets more difficult and ex-

pensive. Service deployment, the process of making

a service ready for use, often includes deploying

multiple, interrelated software components into het-

erogeneous environments. Different technologies and

tools try to address these complexities by describing

the environments, abstracting the dependencies, and

automating the process. Virtual Appliances, a set of

virtual machines including optimized operating sys-

tems, pre-built, pre-configured, ready-to-run applica-

tions and embedded appliance specific components,

are emerging as a breakthrough technology to solve the

complexities of service deployment. Virtual appliances

provide a simple, unified and easy to use interface

for service deployment by encapsulating entire custom

environments, and resolving the execution policy con-

straints and inter-dependencies through pre-installing

the software applications.

The motivation of this paper is to prove virtual

appliances offer a better service deployment mecha-

nism. We start with an easy to understand model to

describe the complexity of service deployment and in-

troduce the architecture of a virtual appliance. We then

analyze the deployment process of using traditional

deployment mechanisms, and quantitatively and qual-

itatively compare the deployment time, operations and

parameters of the traditional approach with the use of

virtual appliances. The results show virtual appliances

offer significant advantages for service deployment

by making the deployment process much simpler and

easier, even for the deployment of advanced enterprise

services.

1. Introduction

An IT service can be defined as several software

components that provide useful functions and can be

deployed in a computing environment and composed

into overall computing systems or single applications

[1], [2]. Service deployment is the process to make the

service ready for use. A general deployment process

may consist of several interrelated activities including

the release of service at the end of the development

cycle; the installation and configuration of the service

into the execution environment, and the activation of

the service [3], [4]. Post-installation activities include

the deactivation, updating, reconfiguration, adapta-

tion, redeploying and deinstallation of the service [5].

According to an IDC survey, the deployment represents

19% of the estimated $95 billion in total software oper-

ation cost [6]. Reducing the cost of service deployment

can greatly reduce the whole TCO [7].
Today, IT services are becoming more and more

powerful and complex. This is especially true for

enterprise services which include many complex and

advanced functions. The complexity of service deploy-

ment lies in the following three aspects:

• Heterogeneous, distributed environments;

• Execution policies and dependencies;

• Operation coordination and constraints.

The increasing complexity of deployment is mainly

due to the heterogeneous environments that the ser-

vice is deployed into and the service’s policies and

dependencies. Software applications rely on the avail-

ability of specific system resource and libraries. In

addition, most of today’s applications, especially those

for enterprise use, are not standalone systems. They

often consist of a large number of components each

2008 IEEE International Conference on Services Computing

978-0-7695-3283-7/08 $25.00 © 2008 IEEE

DOI 10.1109/SCC.2008.53

265

2008 IEEE International Conference on Services Computing

978-0-7695-3283-7/08 $25.00 © 2008 IEEE

DOI 10.1109/SCC.2008.53

265

offering and requiring services of other components.

Different components may come from different pro-

ducers and use different services at the same time.

These components have coordination and constraints

with each other. Moreover, deployment in distributed,

heterogeneous environments adds to the complexity of

service deployment.

Many technologies and tools are designed to support

service deployment and reduce these complexities by

providing descriptions of the environments, abstracting

the dependencies and automating the software installa-

tion. However, these existing deployment mechanisms

have some limitations and do not fully eliminate the

complexity of the deployment [5]. For example, RPM

Package Manager is limited to a specific operating sys-

tem and also fails to explicitly model all dependencies.

An approach to avoid the complexities is to obviate

these problems entirely by creating perfect custom

environments which software applications may be in-

stalled into. This can be achieved by Virtual Appli-

ances, which are a set of virtual machines with pre-

built, pre-configured, ready-to-run applications pack-

aged along with optimized operating systems [8].

Virtual appliances are emerging as a breakthrough

technology, even for enterprise solutions [9] and offer

an improved approach for service deployment com-

pared with previous approaches. Virtual appliances

encapsulate entire custom environments, and resolve

the execution policy constraints and inter-dependencies

by pre-installing the software application in a virtual

machine image designed to run under VMware [10],

Xen [11] or other Virtual Machine Monitors (VMM).

Service deployment for or by customers with virtual

appliances can be achieved easily by performing some

configurations and activating the virtual appliance im-

ages.

In this paper, we provide analysis and models for

service deployment. We also propose a general archi-

tecture for a virtual appliance; analyze the deployment

process and provide quantitative and qualitative com-

parisons against traditional deployment mechanisms

in terms of the deployment time, operations and pa-

rameters. The goal of the paper is to present and

analyze results to determine whether virtual appliances

actually offer a more competitive approach for service

deployment or not. From the experiments and analysis

of the deployment process of using traditional deploy-

ment mechanisms and virtual appliances, we prove

that virtual appliances offer an improved approach for

service deployment, especially for the deployment of

advanced enterprise services.

The remainder of the paper is organized as follows.

Section 2 describes the related works and discusses

the difference with our work. Section 3 gives the basic

analysis and models of service deployment. Section 4

explains the concept of a virtual appliance and pro-

poses the architecture and the deployment process of

using virtual appliances. Section 5 compares virtual

appliances with traditional service deployment mech-

anisms in terms of the deployment time, operations

and parameters. Finally in section 6, we conclude the

paper.

2. Related Works

Many tools such as package management system

like Red Hat RPM Package Manager and FreeBSD

Ports System, Windows Installer [12] and Java plat-

form tools like Enterprise JavaBeans (EJB) [13] are de-

signed and widely used to support service deployment.

Carzaniga et al. [3] described the characteristic of

software deployment and discussed some technologies

at that time. Talwar et al. [1], [2] compared manual,

script, language and model based service deployment

solutions. These solutions are all considered as tradi-

tional service deployment mechanisms in this paper.

These tools and technologies do not resolve the com-

plexities of service deployment completely due to the

limitations in resolving dependencies among service

components and lack of support for heterogeneous

environments.

Dearle [5] studied six cases of software deployment

technologies and gave some of the future directions.

Dearle argued virtualization is likely to have a large

impact on software deployment by qualitative state-

ments. The benefits of virtualization and virtual ma-

chine are also discussed in [14]–[16]. Chen et al. [14]

described how three services, secure logging, intrusion

prevention and detection, and environment migration,

can take advantage of virtual machines. Wlodarz [15]

made a survey of virtualization technologies and listed

virtual machines as suitable for hardware replacement,

testing and debugging, education and e-Learning, and

security systems. Sapuntzakis et al. [17], [18] proposed

Collective, a compute utility using virtual appliances to

manage systems. Mastrianni et al. [19] also proposed

the idea of using appliances to simplify the deployment

and management of SMB services.

Our work is to discuss whether virtual appliances

offer a more competitive approach for service deploy-

ment by providing both quantitative and qualitative

data. These related works only provided qualitative

statements for some of the advantages.

266266

Table 1. A service deployment sample

Steps Operations Remarks
Prepare Learn all the dependencies Mandatory

Pre-installation Adjust OS Optional
Adjust environments Optional

Remove conflicts Optional
Installation Unpack installation Optional

Compile and Build Optional
Copy files Mandatory

Patch Optional
Remove dependencies Optional

Post-installation Verify the installation Optional
Configuration Optional

Start the software system Mandatory

3. Analyzing Service Deployment

In this section, we first analyze the general deploy-

ment process of using traditional service deployment

mechanisms. Then we define a set of simple models

to describe the complexity in service deployment.

3.1. Deployment Mechanisms

Service deployment is the process to make the

service, or software system ready for use. Many tech-

nologies and tools exist to abstract the environments

and dependencies, and to automate the deployment.

Though the traditional tools have different methodolo-

gies, they share the same general deployment process.

For example, they all need to resolve the environment

dependencies and the dependencies among the compo-

nents.

Table 1 shows the general deployment operations for

a service in a standalone or a single node environment.

Some of the operations are automated by available

technologies and tools. These traditional deployment

operations can be classified as follows:

1) Learn dependencies: including dependencies

with platforms and environments, and dependen-

cies among different software components;

2) Prepare for the installation: including resolving

dependencies with platform and environments;

3) Install: including either building from source

files or just copying the required files to the

destination directories;

4) Remove inter-dependencies: including resolving

dependencies among different software compo-

nents;

5) Start the software system.

Sometimes, the software system is patched during or

after the installation process to update or fix problems.

Patch may first backup existing files and configura-

tions, then modify or replace files, and add or remove

Sa

C2

C3

Sb

C5

C4

OP1

C1

OP2 OP3

OP4

(a) Operation Dependencies

Sa
C1

C2

C3

Sb

C5

Sc

C6

C7

C8

C9

Sd

C10

C11

C12

C13

C4

(b) Parameter Dependencies

Figure 1. Service deployment models.

files. Optionally, patch may rebuild the software system

and need verification which adds significant complex-

ity to the deployment.

Deploying services in distributed environments in-

creases complexity. Let’s examine the complexity in-

volved in a typical, three-tier J2EE solution with

Web Servers, Application Servers and the Database

Server. The application servers may be deployed across

multiple nodes to form a cluster for high availability

and load balancing. A sample deployment process is

as follows:

1) Deploy the different software to the nodes, in-

cluding management, load balancing, and appli-

cation servers;

2) Establish the relationships between the manage-

ment nodes and the application servers;

3) Deploy application services;

4) Enable load balancing across the nodes;

5) Establish relationships with the first tier web

server(s);

6) Establish relationships to the third tier database

server.

3.2. Deployment Models

IT system to provide services can be modeled as

consisting of several software components. A single

component is a minimum indivisible entity in service

deployment. Fig. 1 gives an abstract illustration of ser-

vice deployment using traditional deployment mecha-

nisms. Fig. 1(a) shows the deployment of two compo-

nents. The deployment may include several operations,

and each operation may need some configurations or

parameters. S represents a software component, (an

operating system is also considered as a component

267267

in service deployment); c represents a configuration or

parameter; and op represents an operation to perform

configurations. For example, Sa needs two operations,

and op1 needs to configure parameter c1. Fig. 1(a)

also depicts the deployment order and dependencies

of operations. op4 should be after op3 and op3 after

op2. The operations of each software component are

not shown in Fig. 1(b) as we want to focus on the

relationship among the components. In Fig. 1(b), the

relationship between the two software components is

represented in the form of configuration dependencies.

It also indicates there is a deployment order for these

components.

To illustrate the difficulties of service deployment,

we devise models based on deployment operations and

parameters.

Suppose one approach needs m operations to deploy

a service. Each operation has a probability to fail.

Let the failure probability of operation i be ai(i =
1, · · · , m). The whole successful probability rate to

deploy the service would be:

R1 =
m∏

i=1

(1 − ai). (1)

For each operation, we need to configure some

parameters. There is a probability of fail for each

configuration parameter. Suppose operation i has mi

parameters to configure. And the jth parameter may

fail with probability pj . The failure probability ai

would be:

ai = 1 −

mi∏

j=1

(1 − pj). (2)

From (1) and (2), we can get the whole successful

probability rate to deploy the service with this ap-

proach as:

R1 =
m∏

i=1

mi∏

j=1

(1 − pj). (3)

For another approach to deploy the service, suppose

it needs n operations and the probability of failure

operation i is bi(i = 1, · · · , n). Similar to the first

approach, let operation i have ni parameters to con-

figure. The jth parameter may fail with probability qj .

The whole successful probability rate to deploy the

service would be:

R2 =

n∏

i=1

(1 − bi) =

n∏

i=1

ni∏

j=1

(1 − qj). (4)

To compare these two approaches, we just need to

compare R1 with R2. If R1 < R2, we can conclude the

second approach reduces the complexity of the service

deployment compared to the first one.

Sa
C1

C2

C3

Sb

C5

Sc

C6

C7

C8

C9

Sd

C10

C11

C12

C13

C4

Hardware Layer

Host OS (Optional)

Virtual Machine Monitor / Hypervisor

A
p
p
li
a
n
c
e
 A
g
e
n
t

A
p
p
li
a
n
c
e
 A
g
e
n
t

C13’

C7’

C1’

Virtual Appliance Virtual Appliance

Figure 2. The architecture of virtual appliance.

Suppose a1 = a2 = · · · = am = a and b1 = b2 =
· · · = bn = b, for the special cases, if we want to

satisfy R1 < R2, we get:

(1 − a)m < (1 − b)n. (5)

and 0 < a, b < 1, m, n ≥ 1.

This equation is always satisfied if a > b and

m > n. This means we can increase the successful

probability rate to deploy the service by decreasing the

number of deployment operations and the probability

of failure of each operation.

For a general service, if we decrease the number

of deployment operations and the failure probability

of each operation, we increase the success rate to

deploy the service. As each operation is related to

the configuration of parameters, by decreasing the

number of parameters and their failure probability

of configuration, we would increase the success rate

to deploy the service, and reduce the complexity of

service deployment.

4. Leveraging Virtual Appliances

In this section, we first discuss what a virtual appli-

ance is and then describe the deployment and activation

process of using the virtual appliances.

4.1. Basic Architecture

As discussed in Section 1, a virtual appliance is a

pre-built, pre-configured, ready-to-run enterprise ap-

plication packaged along with an optimized operat-

ing system inside a virtual machine. To simplify the

deployment and provide a user-friendly deployment

interface, a general architecture of virtual appliance is

proposed as shown in Fig. 2. It has a minimalist virtual

machine designed to run under a specific hypervisor,

such as VMware or Xen and includes a single appli-

cation, or a suite of applications to provide a service.

268268

In general, the creation phase of virtual appliance

images [20] contains the following steps: 1) Installing

a just enough guest operating system; 2) Installing

the specific software, such as middleware, database

server or applications; and 3) Providing an interface

or mechanism for customers to configure the virtual

appliance. There are three aspects for the virtual ap-

pliance configurations:

• Guest OS Configuration: To make the virtual

appliances work in different environments, the

virtual hardware resources, especially the network

parameters, may require changing. Also, most

customers want to set their own passwords instead

of using default passwords;

• Software Configuration: Since the software ap-

plications were pre-installed and pre-configured,

the changes to the guest OS configuration (net-

work parameters or security) may require ap-

plication configuration change. Additionally, an

appliance may choose to offer some run-time con-

figuration for options that are not pre-configured;

• Appliance Agent Configuration: To coordinate,

the guest OS and application configuration, an

intelligent appliance agent is embedded inside the

virtual appliance.

To make the virtual appliance workable in the de-

ployment environment, usually just a few parameters,

especially network parameters, are changed and re-

configured. Traditionally, as explained in [20] from

VMware, customers can use DHCP or login the virtual

appliance and manually configure the network param-

eters. After the network works, VMware recommends

a web interface should be provided for environment

and software configurations. Instead of just having a

web interface for configuration, our virtual appliance

architecture includes a powerful appliance agent to

automate the activation of a set of virtual appliances

as shown in Fig. 2. The appliance agents are designed

to configure the virtual appliances at the first run in

a new environment [21], [22]. They can configure

the deployment order of software components and

resolve the dependencies of parameters among the

components.

As shown in Fig. 2, some configurations, like Sc’s

c6, are pre-configured in the creation phase of virtual

appliances. Some configurations, like Sa’s c1, need

to be configured by the appliance agent according

to the activation time parameters provided by cus-

tomers. Other configurations, like Sa’s c3, are related

to other virtual appliances’ configurations. These are

configured at the first run by the related virtual ap-

pliances’ appliance agents. The agents work together

to make sure the dependency configurations are right

and consistent. In the following section, we discuss the

deployment and activation of virtual appliances.

4.2. Deployment and Activation

After a virtual appliance is created, it encapsulates

entire custom environments, and resolves the execution

policy constraints and inter-dependencies among the

software components. The virtual appliance is ready

to be deployed in various environments. During the

deployment, there are configurations both inside and

outside the virtual appliance. The interface between the

hypervisor and the virtual appliance provides a uniform

method for configuring virtual hardware resource. For

example, this interface is used for configuring the

number of virtual CPUs, memory size, virtual disk

size, and network parameters.
The appliance agent is leveraged for the config-

uration inside the virtual appliances. The agent re-

configures the guest OS and applications which were

installed during the creation phase according to the

requirements of the customer environment. The con-

figuration typically includes the network parameters,

such as the DHCP server or static IP and network

mask, DNS server, as well as parameters specific to

the software applications.
In support of the agent, the parameters are made

visible to the virtual appliance. For example, the im-

plementation may use a file, the Activation Profiles in

[22], to record the parameters provided by customers

to automate the deployment and activation. Some tools

provided by the virtual machine monitor, for example,

a virtual floppy disk (or v-floppy) containing the pro-

files, can be created. When the v-floppy is attached

to the virtual machine, it is automatically visible to

the appliance agent. Then, the appliance agent will

automate the configuration and activation of virtual

appliances according to the parameter files on the first

boot [22].
As shown in section 3.1, traditional mechanisms

for service deployment in distributed environments

are very complex. We simplify the deployment using

virtual appliances. To make the deployment easier,

three important aspects are considered:

1) Each virtual appliance should be configured and

activated;

2) There is an activation order for these virtual

appliances;

3) There are configuration dependencies between

these virtual appliances.

For example, when DB2 and WebSphere Appli-

cation server (WAS) are both involved in one ser-

269269

MySQLApache

LINUX

PHP

static

content
dynamic content

W
e
b
 B

ro
w
e
r

HTTP/HTTPS

Figure 3. The topology of LAMP.

LAMP

1. Prerequisites: like ANSI-C compiler,

libxm12, etc.;

2. Install apache;

3. Install and configure MySQL;

4. Install PHP at least with:

--with-apxs2

--with-mysql

to support Apache and MySQL;

5. Configure http.conf to add PHP support.

Figure 4. Deploying LAMP from source files.

vice, the parameter of DB2: dbuser.username

should be the same as the parameter of WAS:

jdbc.dbuser.username. In this example, the ap-

pliance agents first check the configuration dependen-

cies and then activate these virtual appliances in the

right order. The activation order is predefined in the

creation phase. After configuring each single virtual

appliance, appliance agents collaborate to configure the

dependencies among these virtual appliances. When

they finish the configurations, the service is ready for

use.

5. Evaluations

In this section, we first give two deployment sce-

narios. One is a simple and widely used open source

solution, and the other is a powerful enterprise so-

lution. For both examples, we compare the virtual

appliance deployment scenarios with the traditional

service deployment mechanisms.

5.1. Deployment Scenarios

Our first example deployment scenario is a single

node with a LAMP (Linux+Apache+MySQL+PHP)

stack, whose topology is shown in Fig. 3. Fig. 4

illustrates the traditional deployment steps for a LAMP

stack using source files. First, we install PHP sup-

port, Apache and MySQL. Additionally, we need to

configure the Apache support for PHP. By contrast,

all the steps shown in Fig. 4 are built into a virtual

appliance. To deploy the LAMP service using the

S
e
ss
io
n

R
e
p
lic
a
ti
o
n

WAS node1

WAS dmgr

W
e
b
 B
ro
w
e
r

HTTP/HTTPS

Server

WAS node2

Profile

Cluster

Server

A
d
m
in
 S
e
rv
ice

HTTP/HTTPS

S
O
A
P
/JM

X

Profile

A
d
m
in
 C
o
n
so
le

N
o
d
e
 A
g
e
n
t

W
A
S
 P
lu
g
in

H
T
T
P
 S
e
rv
e
r

IHS
DB2

N
o
d
e
 A
g
e
n
t

TCP/IP

TCP/IP

HTTP/HTTPS

S
O
A
P
/JM

X

Figure 5. The topology of WAS cluster.

virtual appliance, we just need to activate the single

virtual appliance image and set the appropriate network

parameters.

Our second example deployment scenario is an

enterprise service. In this example, we use IBM Web-

Sphere Application Server (WAS) together with a

database server and a front web server to support

J2EE applications. As shown in Fig. 5, the WAS

cluster consists of three nodes: one is the manager

node, and the other two are managed nodes. We also

apply any required patches. The database server is

IBM DB2 and IBM HTTP Server is used as the web

server. The deployment of the solution with traditional

mechanisms is illustrated in Fig. 6.

There is fewer steps to deploy the same WAS cluster

solution using virtual appliances. As shown in Fig. 7,

the deployment process just sets relevant parameters

among the three virtual appliances and activates them

in the recommended sequence: the manager node, the

first managed node, the other managed node, the web

server node and the database node. Afterwards, the

solution is ready for use.

5.2. Comparison Metrics

To evaluate whether virtual appliance deployment

is more competitive or not, we compare virtual ap-

pliances with traditional mechanisms in terms of the

deployment time, operations and parameters.

Our traditional deployment measurements are taken

on the 1 Xeon 2.50GHz CPU with 1GB memory

machine. Similarly, the virtual machine is a 1 CPU and

1GB memory which we deploy to a 16 Xeon 2.50GHz

CPUs with 16GB memory physical machine. SUSE

Linux Enterprise 10 is used for all OSs, and we use

Xen 3.0.4 as the VMM.

5.2.1. Deployment Operations. Table 2 shows the

comparisons of the deployment operations and time

for LAMP. We first focus on the time to deploy

270270

WebSphere Application Server(WAS) Cluster

1. Install WAS Network Deployment and fixpack

in the manager node (dm);

2. Install WAS and fixpack in managed nodes (

n1 and n2);

3. Create dmgr profile at dm;

4. Create appserver profiles at n1 and n2;

5. Start manager at dm;

6. Addnode n1 to dm;

7. Addnode n2 to dm;

8. Configure an external IBM HTTP Server;

9. Install DB2 at database node;

10. Create database;

11. Create cluster and add cluster members;

11. Configure the cluster and database;

12. Start Cluster and DB2.

Figure 6. Traditional WAS cluster deployment.

WebSphere Application Server(WAS) Cluster

1. Customize profiles in this solution

2. Activate WAS dmgr virtual appliance;

3. Activate two WAS managed node virtual

appliances;

4. Activate IBM HTTP server virtual appliance;

5. Activate DB2 virtual appliance.

Figure 7. WAS virtual appliance deployment.

applications, which are 21m1s using traditional mech-

anisms and only 23s using a virtual appliance. Table 3

depicts the deployment operations and time for the

WAS cluster enterprise solution. As shown in Table 3,

virtual appliances greatly reduce the deployment time

for this enterprise scenario, from 115.5 m to only

2m10s. The deployment time for virtual appliances is

mainly driven by the number of virtual appliances to

activate (including configuration of virtual appliances)

and the time to start the software system, while the

time using traditional mechanisms is dependent on the

specific software system.

Please note, the total time for the virtual appliance

scenario does not include the time to copy the virtual

appliance images to destination directories. This time

is dependent on the source media and images size. This

time can be minimized by using networked storage and

high speed LAN connection. In addition, the time does

not include the time to install the operating system

with traditional mechanisms or the time to install the

hypervisor with virtual appliances. These times can be

considered as constant for any applications or services,

and is common skills for the deployers.

Table 2 and Table 3 also provide details on the

specific deployment operations. For virtual appliances,

Table 2. Comparisons for LAMP

Traditional Virtual appliance
Operations Time Operations Time

Install Apache 4m4s Activate Image 20s
Install,configure MySQL 9m34s Start servers 3s

Install PHP 7m10s Total 23s
PHP support apache 10s

Start servers 3s
Total 21m1s

Table 3. Comparisons for WAS cluster

Traditional Virtual appliance
Operations Time Operations Time

Install was 6.0 at dm 6.5m Activate five images 1m
Patch 6.0.2 to dm 15.5m startManager 0.5m

Patch 6.0.2.19 to dm 9m startNode n1 13s
Install was 6.0 at n1 5.5m startNode n2 17s

Patch 6.0.2 to n1 13m Start cluster 4s
Patch 6.0.2.19 to n1 9m Start DB2,IHS 6s
Install was 6.0 at n2 7m Total 2m10s

Patch 6.0.2 to n2 13.5m
Patch 6.0.2.19 to n1 9m
Create dmgr at dm 2.5m

Create appserver at n1 3m
Create appserver at n2 3m

startManager 0.5m
Addnode at n1 2m
Addnode at n2 0.5m

Install IHS 6.1, plugins 5m
Install DB2 v9 6m

Create Trade table 0.5m
Create Trade cluster 3.5m

Start the solution 1m
Total 115.5m

the deployment operations include activating and start-

ing software system. For traditional mechanisms, the

deployment operations are dependent on each software

system. It is shown that for both example services,

the number of deployment operations for virtual ap-

pliances is greatly reduced compared with traditional

mechanisms.

5.2.2. Deployment Parameters. The large number of

configuration parameters can make service deployment

difficult, error-prone and time-consuming. For exam-

ple, IBM DB2 has about 40 configuration parameters

that are frequently customized during typical tradi-

tional deployment scenarios. In developing a virtual

appliance, the builder typically exposes fewer con-

figuration parameters than offered through traditional

deployment mechanisms. Many parameters are pre-

configured and not exposed during the deployment.

The parameters needed to deploy LAMP from source

files are: 1) Add a user and group both named mysql

for MySQL’s use; 2) Set MySQL root’s password dur-

ing installation; 3) Add PHP support in http.conf;

4) Edit the http server port for resolving possible

271271

conflicts, for example, default server port 80 may be

already taken.

Using a virtual appliance, all these parameters can

be pre-configured. The only deployment time config-

uration is environment changes like network interface,

which can be done by the appliance agent according

to the activation parameters. Therefore, compared with

traditional mechanisms, a virtual appliance reduces the

number of configuration parameters and the difficulty

of service deployment.

6. Conclusion

In this paper, we provided a model to describe the

complexity of service deployment and proposed the ar-

chitecture of virtual appliances. After that, we analyzed

the deployment process of using virtual appliances

and traditional deployment mechanisms, and compared

these two deployment mechanisms in terms of the

deployment time, operations and parameters. From

the experimental results, we showed virtual appliances

can make service deployment simpler and easier. We

showed the findings apply to both a simple, open

source solution (e.g. LAMP) as well as an advanced

enterprise solutions like an IBM WebSphere Applica-

tion Server cluster.

References

[1] V. Talwar, D. Wenchang, and Y. Jung, “Approaches for
service deployment,” Internet Computing, IEEE, vol. 9,
no. 2, pp. 70–80, 2005.

[2] V. Talwar, Q. Wu, C. Pu, W. Yan, G. Jung, and
D. Milojicic, “Comparison of approaches to service
deployment,” in Proceedings of IEEE International
Conference on Distributed Computing Systems, 2005,
pp. 543–552.

[3] A. Carzaniga, A. Fuggetta, R. Hall, A. van der Hoek,
D. Heimbigner, and A. Wolf, “A characterization
framework for software deployment technologies,”
Dept. of Computer Science, University of Colorado,
Tech. Rep., April 1998, tech. Rep. CU-CS-857-
98. [Online]. Available: http://serl.cs.colorado.edu/
∼carzanig/papers/CU-CS-857-98.pdf

[4] OMG, “Specification for deployment and configuration
of component-based distributed applications,” 2003.
[Online]. Available: http://www.omg.org/docs/mars/
03-05-08.pdf

[5] A. Dearle, “Software deployment, past, present and
future,” in International Conference on Software En-
gineering (Future of Software Engineering), 2007.

[6] B. Zellen, “Easing toward utility computing,” Jul.
2004. [Online]. Available: http://smbinnovator.com/
index.php?articleID=3573§ionID=4

[7] J. S. David, D. Schuff, and R. S. Louis, “Managing
your total IT cost of ownership,” Communications of
the ACM, vol. 45, no. 1, January 2002.

[8] VMware, “Virtual appliance marketplace, Virtual
appliances, VMware appliance.” [Online]. Available:
http://www.vmware.com/appliances/

[9] M. Yarnall, L. Berc, and Q. B. Wang, “Using
VMware ESX server with IBM Websphere
Application Server,” July 2006. [Online]. Avail-
able: http://www-900.ibm.com/cn/crl/download/ESX
WAS WP 24Jul06 final.pdf

[10] “VMware.” [Online]. Available: http://www.vmware.
com/

[11] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield, “Xen
and the art of virtualization,” in Proceedings of ACM
symposium on Operating systems principles, 2003.

[12] “Windows installer.” [Online]. Available: http://msdn2.
microsoft.com/en-us/library/aa372866.aspx

[13] “Enterprise javabeans technology.” [Online]. Available:
http://java.sun.com/products/ejb/

[14] P. Chen and B. Noble, “When virtual is better than
real,” in Proceedings of Workshop on Hot Topics in
Operating Systems (HotOS), 2001, pp. 133–138.

[15] J. J. Wlodarz, “Virtualization: A double-edged sword,”
2007. [Online]. Available: http://www.citebase.org/
abstract?id=oai:arXiv.org:0705.2786

[16] R. Willenborg, “Virtual appliances – panacea or
problems?” Oct 2007. [Online]. Available: http://www.
ibm.com/developerworks/websphere/techjournal/0710
col willenborg/0710 col willenborg.html

[17] C. Sapuntzakis, D. Brumley, R. Chandra, N. Zeldovich,
J. Chow, M. S. Lam, and M. Rosenblum, “Virtual
appliances for deploying and maintaining software,” in
Proceedings of USENIX conference on System admin-
istration (LISA), 2003, pp. 181–194.

[18] C. Sapuntzakis and M. S. Lam, “Virtual appliances
in the collective: A road to hassle-free computing,” in
Proceedings of Workshop on Hot Topics in Operating
Systems, 2003.

[19] S. Mastrianni, D. F. Bantz, K. A. Beaty, T. Chefalas,
S. Jalan, G. Kar, A. Kochut, D. J. Lan, L. O’Connell,
A. Sailer, G. Wang, Q. B. Wang, and D. G. Shea,
“IT Autopilot: A flexible IT service management and
delivery platform for small and medium business,” IBM
SYSTEMS JOURNAL, vol. 46, no. 3, pp. 609–624,
2007.

[20] VMware, “Best practices for building virtual
appliances,” White Paper, Nov 2007. [Online]. Avail-
able: http://www.vmware.com/files/pdf/Best Practices
Building Virtual Appliances.pdf

[21] R. Willenborg, Q. Wang, D. Gilgen, and S. Smith,
“Using virtual image templates to deploy Websphere
Application Server,” IBM WebSphere Developer
Technical Journal, vol. 5, May 2007. [Online]. Avail-
able: http://www.ibm.com/developerworks/websphere/
techjournal/0705 willenborg/0705 willenborg.html

[22] L. He, S. Smith, R. Willenborg, and Q. Wang,
“Automating deployment and activation of virtual
images,” IBM WebSphere Developer Technical
Journal, vol. 8, Aug. 2007. [Online]. Avail-
able: http://www.ibm.com/developerworks/websphere/
techjournal/0708 he/0708 he.html

272272

